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a b s t r a c t

Estimating the generalization performance of learning algorithms is one of the main

purposes of machine learning theoretical research. The previous results describing the

generalization ability of Tikhonov regularization algorithm are almost all based on

independent and identically distributed (i.i.d.) samples. In this paper we go far beyond

this classical framework by establishing the bound on the generalization ability of

Tikhonov regularization algorithm with geometrically beta-mixing observations. We

first establish two refined probability inequalities for geometrically beta-mixing

sequences, and then we obtain the generalization bounds of Tikhonov regularization

algorithm with geometrically beta-mixing observations and show that Tikhonov

regularization algorithm with geometrically beta-mixing observations is consistent.

These obtained bounds on the learning performance of Tikhonov regularization

algorithm with geometrically beta-mixing observations are proved to be suitable to

geometrically ergodic Markov chain samples and hidden Markov models.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Recently there has been a large increase of the interest for theoretical issues in the machine learning community. It is
mainly due to the fact that statistical learning theory has demonstrated its usefulness by providing the ground for
developing successful and well-founded learning algorithms such as support vector machines (SVMs) (Vapnik, 1998).
Besides their good performance in practical applications they also enjoy a good theoretical justification in terms of both
universal consistency and learning rates (see Steinwart and Christmann, 2008; Chen et al., 2004) if the training samples
come from an i.i.d. process. This renewed interest for theory naturally boosted the development of performance bounds
(see Chen et al., 2004; Cucker and Smale, 2001; Cucker and Zhou, 2007; Smale and Zhou, 2003). However, independence is
a very restrictive concept in several ways (Steinwart et al., 2009; Vidyasagar, 2003). First, it is often an assumption, rather
than a deduction on the basis of observations. Second, it is an all or nothing property, in the sense that two random
variables are either independent or they are not—the definition does not permit an intermediate notion of being nearly
independent. As a result, many of the proofs based on the assumption that the underlying stochastic sequence is i.i.d. are
rather ‘‘fragile’’. The notion of mixing allows one to put the notion of ‘‘near independence’’ on a firm mathematical
foundation, and moreover, permits one to derive a robust rather than a ‘‘fragile’’ theory. In addition, this i.i.d. assumption
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cannot be strictly justified in real-world problems. Therefore, relaxations of the independence assumption have been
considered for quite a while in both machine learning and statistical literature. For example, Yu (1994) established the
rates of convergence for empirical processes of stationary mixing sequences. White (1989) considered cross-validated
regression estimators for strongly mixing processes. Modha and Masry (1996) established the minimum complexity
regression estimation with m-dependent observations and strongly mixing observations respectively. Vidyasagar (2003)
considered the notions of mixing and proved that most of the desirable properties (e.g. PAC property or UCEMUP property)
of i.i.d. sequence are preserved when the underlying sequence is mixing sequence. Nobel and Dembo (1993) proved that if
a family of functions has the property that the empirical means based on i.i.d. sequences converge uniformly to their values
as the number of samples approaches infinity, then the family of functions continues to have the same property if the i.i.d.
sequence is replaced by b�mixing sequence. Karandikar and Vidyasagar (2002) extended this result to the case where the
underlying probability is itself not fixed, but varies over a family of measures. Steinwart et al. (2009) proved that the SVMs
algorithm for both classification and regression are consistent if the samples of processes satisfying the law of large
numbers. Xu and Chen (2008) established the learning rates of regularized regression for exponentially strongly mixing
sequences. Smale and Zhou (2009) studied online learning algorithm with Markov sampling. Zou and Li (2007) established
the performance bounds of ERM learning algorithms with exponentially strongly mixing sequences. Sun and Wu (2010)
considered the regularized least square regression with dependent samples.

There are many definitions of non-independent sequences in Vidyasagar (2003) and Steinwart et al. (2009), but we are
only interested in b�mixing sequence in this paper, the reasons are as follows: First, Vidyasagar (2003) pointed out that in
machine learning applications, a�mixing is ‘‘too weak’’ an assumption and f�mixing is ‘‘too strong’’ an assumption,
b�mixing is ‘‘just right’’ and more meaningful in the context of PAC learning. Second, Markov chain samples appear so
often and naturally in applications, especially in biological (DNA or protein) sequence analysis, speech recognition,
character recognition, content-based web search and marking prediction, and Vidyasagar (2003) and Meyn and
Tweedie (1993) proved that a very large class of Markov chains and hidden Markov models (HMM) can produce
b�mixing sequences. To study the generalization performance of Tikhonov regularization algorithm with geometrically
beta-mixing observations, in this paper we first establish two refined concentration inequalities for geometrically beta-
mixing sequences. We then obtain the bound on the learning rates of Tikhonov regularization algorithm with
geometrically beta-mixing observations, and prove that Tikhonov regularization algorithm with geometrically beta-mixing
observations is consistent.

The rest of this paper is organized as follows: In Section 2, we introduce the definitions of beta-mixing sequence and
Tikhonov regularization algorithm. In Section 3 we establish two refined concentration inequalities for geometrically beta-
mixing sequences. We obtain the bound on the learning rates of Tikhonov regularization algorithm with geometrically
beta-mixing observations in Section 4. Finally, we give some significant conclusions in Section 5.
2. Preliminaries

We introduce some notations and do some preparations in this section.
Let Z ¼ fzi ¼ ðxi,yiÞg

1
i ¼ �1 be a stationary real-valued stochastic process defined on a probability space ðZ1,F1,PÞ. For

�1o io1, let F k
�1 denote the s�algebra generated by the random variables zi,irk, and similarly let F1k denote the

s�algebra generated by the random variables zi,iZk. Let Pk
�1 and P1k denote the corresponding marginal probability

measures respectively. Let P0 denote the marginal probability of each of the zi. Let F k�1
1 denote the s�algebra generated by

the random variables zi,ir0 as well as zj,jZk. With these notations, there are several definitions of mixing, but we shall be
concerned with only one, namely, b�mixing in this literature (see Steinwart et al., 2009; Vidyasagar, 2003; Yu, 1994).

Definition 1 (Vidyasagar, 2003). The sequence Z ¼ fzi ¼ ðxi,yiÞg
1
i ¼ �1 is called b�mixing, or completely regular, if

sup
C2F k�1

1

jPðCÞ�ðP0
�1 � P11 ÞðCÞj ¼ bðkÞ-0 as k-1,

where bðkÞ is called the b�mixing coefficient.

Assumption 1 (Vidyasagar, 2003). The sequence Z is called geometrically b�mixing, if for some constants m and ao1, the
b�mixing coefficient satisfies

bðkÞrmak, kZ1:

Remark 1. (i) In Definition 1, if the ‘‘future’’ events beyond time k were to be truly independent of the ‘‘past’’ events before
time 0, then the probability measure P would exactly equal the ‘‘split’’ measure P0

�1 � P11 . The b�mixing coefficient thus
measures how nearly the product measure approximates the actual measure P.

(ii) If the sequence Z consists of i.i.d. random variables, then P equals the measure ðP0Þ
1, which denotes the measure on

ðZ1,F1Þ. In such a case, the mixing coefficient bðkÞ is zero for any integer k, that is, i.i.d. random variables satisfy

Assumption 1.
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Denote by S the training sample set of size m

S¼ fz1 ¼ ðx1,y1Þ,z2 ¼ ðx2,y2Þ, . . . ,zm ¼ ðxm,ymÞg

drawn from the geometrically b�mixing sequence Z. Given a function set H, the goal of machine learning from the sample
set S is to find a function f : X-Y so that it has small expected risk (or error)

Eðf Þ ¼ E½‘ðf ,zÞ� ¼

Z
Z
‘ðf ,zÞdðP0Þ,

where X is a compact space, and the function ‘ðf ,zÞ is a non-negative loss function. Since our aim is to discuss general
learning problems, we will consider the loss function of general form ‘ðf ,zÞ in the sequel.

Let O : H-Rþ be a penalty functional over the hypothesis space H. The ERM with Tikhonov (1963) regularization
solves the problem

fS,l ¼ argmin
f2H
fEmðf ÞþlOðf Þg ð1Þ

with l40 a constant, where Emðf Þ is defined as

Emðf Þ ¼
1

m

Xm

i ¼ 1

‘ðf ,ziÞ:

The functional Oðf Þ is called the regularizer and the constant l is called the regularization parameter, it often depends on
the sample size m: l¼ lðmÞ and satisfies l-0 as m-1.

Thus our purpose of this paper is to estimate the difference

EðfS,lÞ�Eðf �Þ

between the value of achieved risk EðfS,lÞ and the value of minimal possible risk Eðf �Þ over all measure functions. According
to the definition of the output function fS,l, for any fl 2 H, there holds

EmðfS,lÞþlOðfS,lÞrEmðflÞþlOðflÞ:

Hence we have

EðfS,lÞ�Eðf �ÞrEðfS,lÞ�Eðf �ÞþlOðfS,lÞrfEðfS,lÞ�EmðfS,lÞþEmðflÞ�EðflÞgþfEðflÞ�Eðf �ÞþlOðflÞg: ð2Þ

The second term in inequality (2) depends on the choice of H, but is independent of sampling, we will call it the
regularization error (see Cucker and Smale, 2001; Steinwart and Scovel, 2005; Wu et al., 2006). The first term is called the
sample error.

Definition 2 (Wu et al., 2006). The regularization error for a function fl 2 H is defined as

DðlÞ ¼ EðflÞ�Eðf �ÞþlOðflÞ:

The function fl is called the regularizing function.

Since the minimization (1) is taken over the discrete quantity Emðf Þ, to estimate the difference EðfS,lÞ�Eðf �Þ, we need to
estimate the capacity of the function set that contains fS,l. The capacity is measured by the covering number of H in this
paper.

Definition 3. For a subset M of a metric space and any e40, the covering number N ðM,eÞ of the set M is the minimal
n 2 N such that there exist n disks in M with radius e covering M.

Define the ball of radius R40 in the hypothesis space H as

BOðRÞ ¼ ff 2 H : Oðf ÞrRyg, yZ1:

We close this section by presenting some basic assumptions on the hypothesis space H and the loss function ‘ðf ,zÞ:
(i) We suppose that H is contained in a ball of a Hölder space Cp on a compact subset of an Euclidean space Rd for some

p40 (Zhou, 2003). Then we can assume that for any e40, the covering number of the unit ball satisfies

N ðBOð1Þ,eÞrexpfC0e�2d=pg

for some constant C040. By dilation, we thus have that for any e40,

N ðBOðRÞ,eÞrexpfC0R2d=pe�2d=pg: ð3Þ

(ii) Let Hu¼H [ ff �g, we define

M¼ sup
f2Hu

max
z2Z

‘ðf ,zÞ, L¼ sup
g1ag2 ,g1 ,g22Hu

max
z2Z

j‘ðg1,zÞ�‘ðg2,zÞj

jg1�g2j
,

and we assume that M and L are finite in this paper.
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Remark 2. Note that reproducing kernel Hilbert spaces (RKHS) plays an essential role in the analysis of learning theory
(see e.g. Chen et al., 2004; Cucker and Smale, 2001, 2002). But Zhou (2003) proved that if a Mercer kernel is Cp

ðXÞ ðp40Þ,
then the RKHS associated with this kernel can be embedded into Cp=2

ðXÞ. This is the reason why we consider the function
space Cp

ðX Þ in this paper.

3. Refined probability inequalities

In this section, we establish two refined concentration inequalities for b�mixing sequences. Our approach is based on
the following three lemmas:

Lemma 1 (Vidyasagar, 2003). Suppose i0o i1o � � �o il are integers, and define

k¼ min
0r jr l�1

ijþ1�ij:

Suppose g is essentially bounded and depends only on zi0 ,zi1 , . . . ,zil . Then

jEðg,PÞ�Eðg,P10 Þjr lbðkÞJgJ1,

where E(g,P) and Eðg,P10 Þ are the expectation values of g with respect to P and P10 respectively.

Lemma 2 (Hoeffding, 1963). Suppose that x is a zero-mean random variable assuming values in the interval [a, b]. Let E[g]
denote the expectation value of g. Then for any s40,

E½expðsxÞ�rexpðs2ðb�aÞ2=8Þ:

Lemma 3 (Cucker and Smale, 2002). Let c1,c240, and s4q40. Then the equation

xs�c1xq�c2 ¼ 0

has a unique positive zero x*. In addition

x�rmaxfð2c1Þ
1=ðs�qÞ,ð2c2Þ

ð1=sÞ
g:

To exploit the b�mixing property, we decompose the index set I={1,2,y,m} into different parts as follows: Given an
integer m, choose any integer kmrm, and define lm ¼ bm=kmc to be the integer part of m/km. For the time being, km and lm
are denoted respectively by k and l so as to reduce notational clutter. The dependence of k and l on m is restored near the
end of the paper. Let r=m�kl, and define

Ii ¼
fi, iþk, . . . , iþ lkg, i¼ 1,2, . . . , r,

fi, iþk, . . . , iþðl�1Þkg, i¼ rþ1, . . . , k:

(

Note that
S

iIi equals the index set {1,2,y,m} and that within each set Ii, the elements are pairwisely separated by at least k.
Then we first establish the following theorem.

Theorem 1. Let Z be a stationary b mixing sequence with the mixing coefficient satisfying Assumption 1. Let

mðbÞ ¼ m
8m

lnð1=aÞ

� �1=2
& ’�1

6664
7775,

where m denotes the number of observations and buc ðdueÞ denotes the greatest (least) integer less (greater) than or equal to u.

Then for any e,0oeo3M,

ProbfjEmðf Þ�Eðf Þj4egr2ð1þme�2Þexp
�mðbÞe2

2M2

� �
:

Proof. Let pi ¼ jIij=m for i=1,2,y,k, and define

Ti ¼ ‘ðf ,ziÞ�E½‘ðf ,ziÞ�, pmðSÞ ¼
1

m

Xm

i ¼ 1

Ti, biðSÞ ¼
1

jIij

X
j2Ii

Ti:

Then we have

Emðf Þ�Eðf Þ ¼ pmðSÞ ¼
Xk

i ¼ 1

pibiðSÞ:

Since expð�Þ is convex, we have that for any g40,

expðgpmðSÞÞ ¼ exp
Xk

i ¼ 1

gpibiðSÞ

" #
r
Xk

i ¼ 1

piexpðgbiðSÞÞ:
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Now take the expectation of both sides with respect to P, we obtain

E½expðgpmðSÞÞ,P�r
Xk

i ¼ 1

piE½expðgbiðSÞÞ,P�:

Since

expðgbiðSÞÞ ¼ exp
g
jIij

X
j2Ii

Tj

2
4

3
5¼Y

j2Ii

exp
gTj

jIij

� �
r exp

gM

jIij

� �� �jIij

regM ,

where in the last step we use the fact that Ti ¼ ‘ðf ,ziÞ�E½‘ðf ,ziÞ�rM for any i=1,2,y,k.

By Lemma 1, we get

E½egbiðSÞ,P�r ðjIij�1ÞbðkÞJegbiðSÞJ1þE½egbiðSÞ,P10 �:

Since under the measure P10 , the various zi are independent, we have

E½egbiðSÞ,P10 � ¼ E
Y
j2Ii

expðgTj=jIijÞ,P
1
0

2
4

3
5¼ fE½expðgTj=jIijÞ,P0�g

jIi j:

Apply Lemma 2 to the function Tj, since Tj has zero mean and values in an interval of width 2M. It follows from Lemma 2

that

E½expðgTj=jIijÞ�rexpðg2M2=2jIij
2Þ:

Thus

E½egbiðSÞ,P�rexp
g2M2

2jIij

� �
þðjIij�1ÞbðkÞegM :

It follows that

E½egpmðSÞ,P�r
Xk

i ¼ 1

pi exp
g2M2

2jIij

� �
þðjIij�1ÞbðkÞegM

� �
: ð4Þ

We now bound the second term on the right-hand side of inequality (4) which is denoted henceforth by f. We suppose

gr3jIij=M, then we have that

f¼ exp
g2M2

2jIij

� �
þðjIij�1ÞbðkÞegM

rexp
g2M2

2jIij

� �
þejIije�2mak � egM

rexp
g2M2

2jIij

� �
þme�2expfklnðaÞþ4jIijg:

The second inequality follows from Assumption 1 and the fact that jIij�1rejIij�2 for any jIijZ2. We require

expfklnðaÞþ4jIijgr1, which holds if klnðaÞþ4jIijr0. But jIijr ðm=kþ1Þ, thus the bound holds if 4ðm=kþ1Þrklnð1=aÞ.
Since mþkr2m, then the bound holds if 8mrk2lnð1=aÞ or f8m=lnð1=aÞg1=2rk. Let

k¼
8m

lnð1=aÞ

� �1=2
& ’

:

Then we have

frexp
g2M2

2jIij

� �
þme�2: ð5Þ

Since inequality (5) is true for all g,0ogo3jIij=M. To make the constraint uniform over all i, we then require g satisfies

0ogo 3l

M
o

3jIij

M
:

Since g2M2=2l40, we have

fr ð1þme�2Þexp
g2M2

2l

� �
:
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Returning to inequality (4), we have

E½egpmðSÞ,P�r ð1þme�2Þexp
g2M2

2l

� �
:

By Markov’s inequality, we have that for any g40

ProbfpmðSÞ4eg ¼ ProbfegpmðSÞ4egeg

r
E½expfgpmðSÞg,P�

expfgeg

rð1þme�2Þexp
g2M2

2l
�ge

� �
:

Now by substituting g¼ le=M2 and noting that if er3M, then g satisfies gr3l=M. We then obtain that for any e, 0oer3M,

inequality

ProbfpmðSÞ4egrð1þme�2Þexp
�le2

2M2

� �

is valid. Since l¼ bm=kc, replacing l by mðbÞ then implies that for any e, 0oer3M,

ProbfpmðSÞ4egrð1þme�2Þexp
�mðbÞe2

2M2

� �
:

By symmetry, we also have

PfpmðSÞo�egrð1þme�2Þexp
�mðbÞe2

2M2

� �
:

Combining these two bounds leads to the desired inequality in Theorem 1. Then we finish the proof of Theorem 1. &

From Theorem 1, the following corollary is then immediate.

Corollary 1. With all notations as in Theorem 1, then for any d 2 ð0,1Þ, inequality

Eðf Þ�Emðf ÞrM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðC=dÞ

mðbÞ

r

holds true with probability at least 1�d provided that mðbÞZ18lnðC=dÞ, where C ¼ 1þme�2. The same bound holds true for

Emðf Þ�Eðf Þ.

Proof. For any d 2 ð0,1Þ, the positive solution to the equation with the variable e

ð1þme�2Þexp
�mðbÞe2

2M2

� �
¼ d

is given by

e¼M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðC=dÞ

mðbÞ

r
:

In addition, if mðbÞZ18lnðC=dÞ, we have eo3M. Then by Theorem 1 we can complete the proof of Corollary 1. &

By Theorem 1, we obtain the following theorem on the rate of empirical risks uniformly converging to their expected
risk over the hypothesis space Hwith the same method that used in Cucker and Smale (2001). For completeness, we give a
proof.

Theorem 2. With all notations as in Theorem 1, then for any e, 0oeo3M,

Prob sup
f2H
jEmðf Þ�Eðf Þj4e

( )
r2ð1þme�2ÞN H,

e
4L

	 

exp

�mðbÞe2

8M2

� �
: ð6Þ

Proof. Let

H¼H1 [H2 [ � � � [Hn, LSðf Þ ¼ Eðf Þ�Emðf Þ,

then for any e40, whenever supf2HjEðf Þ�Emðf ÞjZ2e, there exists k,1rkrn such that supf2Hk
jEðf Þ�Emðf ÞjZ2e. This

implies the equivalence

sup
f2H
jEðf Þ�Emðf ÞjZ2e () (k, 1rkrn, s:t: sup

f2Hk

jEðf Þ�Emðf ÞjZ2e: ð7Þ
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By the equivalence (7), and by the fact that the probability of a union of events is bounded by the sum of the probabilities

of these events, we have

Prob sup
f2H
jEðf Þ�Emðf ÞjZ2e

( )
r
Xn

k ¼ 1

Prob sup
f2Hk

jEðf Þ�Emðf ÞjZ2e
( )

: ð8Þ

Now we estimate the term on the right-hand side of inequality (8). Let the balls Dk,1rkrn be a cover of H with center

at fk and radius e=2L. Then, for all S 2 Zm and all f 2 Dk,

jLSðf Þ�LSðfkÞjr jEðf Þ�EðfkÞjþjEmðf Þ�EmðfkÞj

rEj½‘ðf ,zÞ��½‘ðfk,zÞ�jþ
1

m

Xm

i ¼ 1

j‘ðf ,ziÞ�‘ðfk,ziÞj

r2L � Jf�fkJ1r2L �
e

2L
¼ e:

It follows that for any S 2 Zm and all f 2 Dk

sup
f2Dk

jLSðf ÞjZ2e¼)jLSðfkÞjZe:

We thus conclude that for any k 2 f1,2, . . . ,ng,

Prob sup
f2Dk

jLSðf ÞjZ2e
( )

rProbfjLSðfkÞjZeg:

By Theorem 1, we can get

ProbfjLSðfkÞjZegr2ð1þme�2Þexp
�mðbÞe2

2M2

� �
:

Then

Prob sup
f2Dk

jLSðf ÞjZ2e
( )

r2ð1þme�2Þexp
�mðbÞe2

2M2

� �
: ð9Þ

By inequalities (8) and (9), we obtain

Prob sup
f2H
jEðf Þ�Emðf ÞjZ2e

( )
r2ð1þme�2ÞN H,

e
2L

	 

exp

�mðbÞe2

2M2

� �
: ð10Þ

Theorem 2 thus follows from inequality (10) by replacing e by e=2. &

Remark 3. (i) mðbÞ in Theorems 1 and 2 is called the ‘‘effective number of observations’’ for the beta-mixing processes.
From Theorems 1 and 2, we can find that mðbÞ plays the same role in our analysis as that played by the number of
observations m in the i.i.d. case (see Cucker and Smale, 2001; Wu et al., 2006).

(ii) Since mðbÞ-1 as m-1, by Theorem 2, we then have that for any e,0oeo3M,

Prob sup
f2H
jEðf Þ�Emðf ÞjZe

( )
-0 as m-1:

This shows that as long as the covering number of the hypothesis space H is finite, the empirical risk Emðf Þ will uniformly

converge to the expected risk Eðf Þ, and the convergence speed may be exponential. This assertion is well known for the

ERM algorithm with i.i.d. samples (see, e.g. Vapnik, 1998; Cucker and Smale, 2001). Then we have generalized this classical

results in Vapnik (1998) and Cucker and Smale (2001) to the geometrically beta-mixing sequences.

By Theorem 2, we also get the following corollary.

Corollary 2. With all notations as in Theorem 1. If for any e40, the covering number of function set H satisfies

N H,
e

4L

	 

rexp C0

e
4L

	 
�2d=p
� �

for some constant C040. Then for any d 2 ð0,1Þ, and for all functions in H, inequality

Eðf Þ�Emðf Þreðm,dÞ
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holds true with probability at least 1�d provided that mðbÞZ18lnðC=dÞ, where

eðm,dÞ ¼max 4M
lnðC=dÞ

mðbÞ

� �1=2

, 4
C0L2d=pM2

mðbÞ

� �p=ð2pþ2dÞ
( )

:

The same bound holds true for Emðf Þ�Eðf Þ.

Proof. By Theorem 2, we have that for any e, 0oeo3M,

P sup
f2H
jEðf Þ�Emðf Þj4e

( )
r2ð1þme�2Þexp C0

e
4L

	 
�2d=p

�
mðbÞe2

8M2

� �
:

Let us rewrite the above inequality in the equivalent form. We equate the right-hand side of the above inequality to a

positive value d ð0odo1Þ

ð1þme�2Þexp C0
e

4L

	 
�2d=p

�
mðbÞe2

8M2

� �
¼ d:

It follows that

e2þ2d=p�
8lnðC=dÞM2

mðbÞ
� e2d=p�

8C0ð4LÞ2d=pM2

mðbÞ
¼ 0:

By Lemma 3, this above equation with respect to e has a unique positive zero e�, and

e�reðm,dÞ :¼max 4M
lnðC=dÞ

mðbÞ

� �1=2

,4
C0L2d=pM2

mðbÞ

� �p=ð2pþ2dÞ
( )

:

Then we deduce that inequality

Eðf Þ�Emðf Þreðm,dÞ

is valid with probability at least 1�d simultaneously for all functions in H. In addition, if mðbÞZ18lnðC=dÞ, we have eo3M.

Then we complete the proof of Corollary 2. &

4. Estimates error bounds

By the two refined probability inequalities (Corollaries 1 and 2) obtained in the last section, we can establish the error
bound of Tikhonov regularization algorithm with geometrically b�mixing observations as follows:

Theorem 3. Let Z be a stationary b-mixing sequence with the mixing coefficient satisfying Assumption 1, that is, the b-mixing

coefficient of sequence Z satisfies

bðkÞrmak, kZ1

for some constants m and ao1. Then for any tZ1, inequality

EðfS,lÞ�Eðf �ÞrM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnð2CÞþtÞ

mðbÞ

r
þe00ðm,tÞþDðlÞ ð11Þ

holds true with probability at least 1�e�t provided that mðbÞZ18ðlnð2CÞþtÞ, where

e00ðm,tÞ ¼max 4M
lnð2CÞþt

mðbÞ

� �1=2

,4
C0½L � ðM=lÞ1=y�2d=pM2

mðbÞ

" #p=ð2pþ2dÞ
8<
:

9=
;:

Proof. By Corollary 1, we have that there exists a subset V1 of Zm with probability at least 1�e�t such that for any S 2 V1

EmðflÞ�EðflÞrM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnCþtÞ

mðbÞ

r
: ð12Þ

Applying Corollary 2 to BOðRÞ, we have that for all f 2 BOðRÞ, there exists a subset V(R) of Zm with probability at least 1�e�t,

Eðf Þ�Emðf Þreðm,tÞ, ð13Þ

where

eðm,tÞ ¼max 4M
ðlnCþtÞ

mðbÞ

� �1=2

,4
C0ðLRÞ2d=pM2

mðbÞ

" #p=ð2pþ2dÞ
8<
:

9=
;:
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Let

WðRÞ ¼ fS 2 V1 : fS,l 2 BOðRÞg:

Combine inequalities (12) and (13) with inequality (2), we deduce that for any S 2 VðRÞ \WðRÞ, with probability at least

1�e�t,

EðfS,lÞ�Eðf �ÞþlOðfS,lÞrM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnð2CÞþtÞ

mðbÞ

r
þeuðm,tÞþDðlÞ, ð14Þ

where

euðm,tÞ ¼max 4M
lnð2CÞþt

mðbÞ

� �1=2

, 4
C0ðLRÞ2d=pM2

mðbÞ

" #p=ð2pþ2dÞ
8<
:

9=
;:

In addition, since for all l40, and almost all S 2 Zm, we have

EmðfS,lÞþlOðfS,lÞrEmð0Þþ0rM:

It follows that OðfS,lÞrM=l for almost all S 2 Zm. Take R :¼ ðM=lÞ1=y and use inequality (14), we complete the proof of

Theorem 3. &

Remark 4. Since mðbÞ-1 and l :¼ lðmÞ-0 as m-1, we can find that

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnð2CÞþtÞ

mðbÞ

r
-0, e00ðm,tÞ-0, DðlÞ-0:

Then by Theorem 3, we conclude that Tikhonov regularization algorithm with geometrically beta-mixing observations is
consistent. Thus we have generalized this classical results on Tikhonov regularization algorithm with i.i.d. samples in Wu
(2005) to geometrically b�mixing sequences.

By Theorem 3, we can easily obtain the following learning rates in weak forms.

Corollary 3. With all notations as in Theorem 3, and let DðlÞrC1ð1=mðbÞÞp=ð2pþ2dÞ for some constant C140. Then for any tZ1,
there exists a constant C2 such that inequality

EðfS,lÞ�Eðf �ÞrM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnð2CÞþtÞ

mðbÞ

r
þC2

1

mðbÞ

� �p=ð2pþ2dÞ

holds true with probability at least 1�e�t provided that

mðbÞZmax 18ðlnð2CÞþtÞ, M½yðd�pÞ�2d�=ypðlnð2CÞþtÞðpþdÞ=pl2d=yp

C0L2d=p

" #p=d
8<
:

9=
;:

To improve the error estimates presented in Theorem 3, we also use iteration technique to find a small ball BOðRÞ that
contains fS,l, this technique was first used in Steinwart and Scovel (2005) and later developed in Wu et al. (2006).

Proposition 1. Take 0olo1=My�1 and RZM, then for any d 2 ð0,1Þ, and any e40,

EðfS,lÞ�Eðf �ÞrDðlÞ½2þðReÞ
d=ðpþdÞ

�

holds true with probability at least 1�d provided that mðbÞZmaxfm1,m2g, where

m1 ¼max 18ln
2C

d

� �
,
½lnð2C=dÞ�ðpþdÞ=d

ðC0Þ
p=dL2

( )
, m2 ¼max

2lnð2C=dÞM2

ðDðlÞÞ2
,

16C0ð4LÞ2d=p

ðDðlÞÞ
2pþ2d

p

8>><
>>:

9>>=
>>;:

Proof. For any tZ1, when 0olo1=My�1, we have ðM=lÞ1=y4M. Take RZM, and notice that if mðbÞ4m1, we have

euðm,tÞ ¼ 4Rd=ðpþdÞ �
C0L2d=p

mðbÞ

� �p=ð2pþ2dÞ

:

In addition, if mðbÞ4m2, we also have

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlnð2CÞþtÞ

mðbÞ

r
rDðlÞ, 4

C0ðLÞ
2d=p

mðbÞ

" #p=ð2pþ2dÞ

rDðlÞ:

Then from inequality (14), we have that for any S 2 VðRÞ \WðRÞ, inequality

EðfS,lÞ�Eðf �ÞþlOðfS,lÞrRd=ðpþdÞDðlÞþ2DðlÞ ¼DðlÞð2þRd=ðpþdÞÞ ð15Þ
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holds with probability at least 1�e�t. This implies fS,l 2 BOðgðRÞÞ, i.e. OðfS,lÞr ðgðRÞÞ
y, where g : Rþ-Rþ is a univariate

function defined by

gðRÞ :¼
DðlÞ
l

� �1=y

ð2þRd=ðpþdÞÞ
1=y:

It follows that

WðRÞ \ VðRÞDWðgðRÞÞ: ð16Þ

Denote Rj=g(Rj�1) for j 2 N, and let R0 ¼ ðM=lÞ1=y. According to (16), we have

WðR0Þ \
\j�1

i ¼ 0

VðRjÞ

 !
DWðRjÞ:

Define rj ¼ ð2þðrj�1Þ
d=ðpþdÞ

Þ
1=y. By Lemma 5.17 in Wu (2005), we have rj ¼ ½ðM=lÞð1=yÞ�ðd=ðpþdÞyÞj

þb�, where

b¼ ðð3ðpþdÞy�dÞ=ððpþdÞy�dÞÞ1=y. Thus, for e40, choose J 2 N such that

J¼
lnðeyÞ

ln
d

ðpþdÞy

� �
666664

777775þ1,

where bvc denotes the integer part of v 2 Rþ . It follows that RJ r ½ðM=lÞeþb�. Set

Re :¼ ð1þbÞ
DðlÞ
l

� �1=y M

l

� �e
:

Then WðRJÞ �WðReÞ and hence WðReÞ has measure at least 1�ðJþ2Þe�t.

Applying (15) to R¼ Re, we have

EðfS,lÞ�Eðf �ÞrDðlÞ½2þðReÞ
p=ðpþdÞ

�

holds for any S 2WðReÞ \ VðReÞ. Taking t¼ lnððJþ3Þ=dÞ, the measure of the set WðReÞ \ VðReÞ is at least 1�ðJþ3Þe�t ¼ 1�d.

Then we complete the proof of Proposition 1. &

Remark 5. In the proof of Proposition 1, we use two technical conditions, that is, loM and 0olo1=My�1. It is natural
because l-0 as m-1.

Remark 6. In order to better understand the significance and value of the established results for Tikhonov regularization
algorithm with geometrically b�mixing samples, we give some useful discussions as follows: First, in some sense,
b�mixing is a very ‘‘natural’’ assumption on non-i.i.d. sequences. For example, Vidyasagar (2003) and Meyn and Tweedie
(1993) proved that if a Markov chain {zi} is V-geometrically ergodic, then the sequence {zi} is geometrically b�mixing.
Namely, there exist constants m and ao1 such that the b�mixing coefficient bðkÞ satisfies

bðkÞrmak ð17Þ

for all k 2 N. Moreover, the b�mixing coefficient is given by

bðkÞrEfr½Pkðz,AÞ,p�,pgr
Z
Z
r½Pkðz,AÞ,p�pðdzÞ,

where Pk(z,A) is the transition probability that the state z will belong to the set A after k time steps, p is the stationary
distribution of the Markov chain {zi}, r is the total variation metric between two probability measures. Especially, if a
Markov chain can be described by the recursion relation

ztþ1 ¼ f ðztÞþet ,

where et is noise sequence, zt 2 R
k for some integer k, subject to three suitable assumptions (see Theorem 3.11 in

Vidyasagar, 2003 for details), then we can define a Lyapunov function V such that the Markov chain is geometrically
b�mixing. Moreover, Meyn and Tweedie (1994) have presented a method to compute the parameters m and a in inequality
(17). Thus we can obtain the parameters m and a of geometrically b�mixing coefficient in inequality (17) for the Markov
chain described by the above recursion relation. However, other mixing sequences (i.e. a�mixing and f�mixing) do not
have this property of b�mixing sequences. The interested readers can consult Vidyasagar (2003) for the details. This
implies that these results on the learning performance of Tikhonov regularization algorithm with geometrically b�mixing
observations are suited to geometrically ergodic Markov chain samples.

Second, Vidyasagar (2003) proved that in hidden Markov models, if the underlying Markov chain has b�mixing property

(or geometrically b�mixing), then so does the corresponding hidden Markov model. Therefore, the established results in

this paper are also suited to hidden Markov models.
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5. Conclusions

In this paper, we studied the learning performance of Tikhonov regularization algorithm with geometrically b�mixing
observations. We first established two new refined probability inequalities for geometrically b�mixing sequences. We
then derived the bounds on the learning performance of Tikhonov regularization algorithm with geometrically b�mixing
samples, and proved that Tikhonov regularization algorithm with geometrically b�mixing observations is consistent. To
our knowledge, these results for geometrically b�mixing here are the first explicit bounds on the rate of convergence in
this topic. In order to better understand the significance and value of the established results in this paper, we also give
some useful discussions in the last section. By these discussions, we concluded that these established results on the
learning performance of Tikhonov regularization algorithm for geometrically b�mixing observations are not only suitable
to geometrically ergodic Markov chain samples, but also suitable to hidden Markov models. In addition, the obtained
results extended the well-known statistical learning theory for Tikhonov regularization algorithm justified previously for
i.i.d. observations in Wu et al. (2006).

Further directions of research include establishing the bounds on the better learning rates of Tikhonov regularization
algorithm with geometrically b�mixing samples, and the essential difference between the generalization ability of
Tikhonov regularization algorithm with i.i.d. samples and that for geometrically b�mixing samples. All these problems are
under our current investigation.
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